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LE'ITER TO THE EDITOR 

In search of an optimal dilution algorithm for 
feedforward networks 

R GarcCs, P Kuhlmann and H Eissfeller 
Institut fiir theoretische F'hysik 111, Julius-Maximilians-Universit~t Wiirrburg, 
Am Hubland, D-W87M) Wiinburg, Federal Republic of Germany 

Received 6 July 1992 

Abshad. In a recent paper we presented a dilution algorithm that yields a storage capacity 
per synapse CL.. larger than 2. In this letter, two new algorithms with even higher values 
are introduced. We study a one-step dilution algorithm, where the perceptron is used to 
select a fraction of the couplings to be removed. For the remaining bonds the pemptron 
of optimal stability is releamed. We further compare simulation data from an iterative 
version of the one-step dilution algorithm with phase-space volume calculations. 

Several dilution models for feedforward as well as for attractor neural networks have 
been proposed in the past. For diluted attractor neural networks calculations of 
thermodynamical properties have been performed and the sizes of the basins of 
attraction have been determined [I-41. Feedfonvard neural networks have been used 
to learn a set of given patterns perfectly. Their dilution has been treated analytically 
for different models [5-71. Our motivation is to find an algorithm for feedforward 
neural networks which fulfils a given task with a minimum amount of synapses, since 
this is desirable for hardware realizations. 

In a recent paper [8] we have shown that by using the Hehb couplings for the 
selection of the bonds to be removed, and learning the perceptron of optimal stability 
afterwards, a high storage capacity per synapsis can be achieved. 

In this letter we address the question of the minimum number of synapses that a 
feedforward perceptron needs to map p given patterns to the corresponding outputs. 
Two algorithms will be presented that result in an a.,, greater than the one reached 
by the hybrid method [8]. As a first step we construct the preceptron of optimal stability 
instead of using the Hebbian couplings. We remove all the bonds with absolute value 
lower than a threshold and learn the perceptron of optimal stability for the remaining 
bonds again. For this one-step aigoriinm we are abie to caicuiate the criiicai storage 
capacity analytically. The second algorithm is an iterative version, where in each step 
only the weakest bond is removed and the perceptron of optimal stability is learned 
again on the remaining sites. 

We consider a simple perceptron consisting of an input layer of N neurons 
S,, j s  {I , .  . . , N} feeding directly into the output S. The network is required to store 
p = aN patterns f;, v E { 1,. . . , p } ,  j E {I, . . . , N}.  The (; are chosen randomly accord- 
ing to the Gaussian distribution function 
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Each pattern has a binary output S’ E (-1,l) that has to be retrieved by the network. 

The perceptron problem is to find a vector J = (J,, . . . , JN)T that maps all the 
The outputs are chosen independently with the probability p ( S ”  = + l ) = i .  

p = aN pattems into the right outputs: 

S’=sgn 46; for all Y = 1, . . . , p.  (2) 
(j:l ) 

This is equivalent to the condition 

E ’ = -  1 N  +;>o forall u = l ,  ..., p 
mj-1 

(3) 

for the local fields E’ of the p modified pattems u;=S”t ; .  The stability K of the 
perceptron is defined as 

~=min{E’}/dQ (4) 

where Q = (1/N) Xp, J:. For a given LI the perceptron of optimal stability is unique. 
In the limit N + a? its critical storage capacity has been calculated by Gardner [9] 

Instead of selecting the bonds that have to be removed according to the Hebbian 
learning rule [SI, we calculate the perceptron of optimal stability. In order to obtain 
a desired dilution value f in one step, we have to cut the couplings at a threshold w, 
which is given by the restriction 

Irr 
\-E -,. 

(5) 
forx>O 
for x s 0. 

where O(X) = 
1 N  
NI=] 

f=- 1 O(lJ,I-w) 

This results in the following algorithm: 
1. Leam the perceptron of optimal stability with a coupling vectorJ = (5, , . . . , JN)T. 
2. Remove all the sites j whose corresponding couplings have absolute values 141 

smaller than a threshold w. Therefore N(l -f) sites are removed, wherefis the fraction 
“1 LIIG IcLnarrLLILt ;  >,IC>. 
-C.L- ----:..:-- -:.-- 

3. Relearn the perceptron of optimal stability on the remaining sites. 
For the analytical calculation we assume that f is self-averaging in the limit N + m 

with respect to taking averages over the first perceptron and the patterns. Since the 
couplings of the first perceptron are normally distributed, this leads to: 

f= 2 @ ( - w )  (6 )  

where 

To start the Gardner calculation [9] of the fractional phase-space volume V, we 
choose the p modified pattems and learn the first perceptron with couplings. J and 
stability K , .  Let the 7; .  k E {I ,  . . . , Nf}, denote the U; with c, =@(I J,I - w )  = 1, i.e. the 
patterns on the remaining sites k after the dilution procedure. If we require a stability 
K~ for the diluted perceptron the fractional phase-space volume on the remaining 
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sites is 

with 

We assume that the entropy s = (1/N) In V is self-averaging with respect to a replica- 
average over the first perceptron and an average over the modified patterns: 

where ((. . .)) is the average with respect to the probability distribution of the modified 
patterns. Since the S'=*l are chosen with equal probability the distribution of the 
modified patterns is identical to the one of the patterns themselves (1). 

The average (. . .) over the first perceptron has to be calculated by means of a replica 
average [lo, 111: 

Note that in contrast to a standard replica calculation of an averaged free energy [ 121, 
in this replica average one replicon (for instance the first one, see equation ( 9 ) )  is 
specified. The replica-index p E {I , .  . . , m} has been introduced to calculate the average 
over the first perceptron. To average In V ( J )  over the modified pattems a second 
replica index p E {1, . . . , n} is needed. The following overlaps appear as saddle-point 
variables in the calculation: 

l N  
Nj=l 

-- 2 J ~ J ;  
BY - (10) 

( i i j  
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We assume replica symmetry for Pa, and Q,, Pee = lVp, Pa, = p V p ,  p # 7, and 
accordingly for Q,. Since in equation (9) the replicon p = 1 is specified, R,, has to 
be treated separately. Replica symmetry is assumed for the remaining replica. Therefore 
we set r: = Rl,Vp and r = Ra,Vp = 2,. . . , m, Vp. 

The calculation of the critical storage capacity for the second perceptron is sim- 
plified, if we require the first perceptron to have optimal stability. The limit p + 1 then 
yields: 

with @(x) from equation (6) as calculated by Gardner [9]. 
We calculate the function /=limq+:(l-q)s at the critical point of the second 

perceptron, where s is the entropy from (8). After a transformation of variables we 
obtain: 

I ( K 1 ,  a, b, K 2 . f )  

fa' b2 f +-+- 
2 E  2 2 

-- 

where LI and b are the remaining order parameters and E = f +m w exp(-fw'), 
where w is the threshold for the cutting of the couplings. 

Given K~ andf; the order parameters a, b and the critical stability K~ are calculated 
by solving the following system of equations (similar to [14]): 

J/ a/  
Ja ab 

0 -=O. -= 

Together with equation (13) the maximum storage capacity a , ( ~ ~ , f )  is calculated. 
This data is given in figure 1, where we have plotted K~ as a function of a for some 
values of 1: For comparison the results of the numerical simulations are also given. 
The simulations were run on a system of N = 200 neurons, and averaged over 50 
samples. The perceptron of optimal stability can be learned using various algorithms 
[15,16], we used the AdaTron algorithm [17]. The analytical results and the simulation 
data are shown in figure 1. They are in very good agreement. 

The fraction 

represents the critical storage capacity per synapse. The corresponding curve for the 
one-step algorithm is plotted in figure 2. 
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a 

Figure 1. The stability ~ ( n )  is given as a function of OL for some values ofJ The numerical 
simulations (symbols) are compared with the analytical results (solid curves). The results 
were averaged over 50 runs with systems of N =ZOO neurons each. The statistical erron 
are smaller than the symbol sizes. 

G.04 , , , , , , , I , 1 
0.0 0.1 0.2 0.3 0.1 0.5 0.6 0.7 0.8 0.9 I O  

f 

Figure 2. The effective storage capacity aCn=aG/f  is given as a function ofthe dilutianj: 
Shawn from top to bottom are the RSB solution of the annealed dilution case, the multistep 
method, the AT-line, the perceptran one-step method, the hybrid algorithm as well as the 
Quenched dilution case. 

In the system of equations (15) the order parameter a can be interpreted as an 
overlap between the first and second perceptron, both of them being required to have 
optimal stability. Therefore a provides a measurement for the importance of the 
relearning procedure, since decreasing overlaps a indicate an increasing difference 
between the coupling vectors of the two perceptrons, 

r 
.Tr 

(I =- 
. J  

where r has been defined above as r =  RB,, p 3 2  (see equation (11)). The analytical 
and numerical results for a are in very good agreement, both of them are shown in 
figure 3. As expected for strongly diluted networks (small f values) and large storage 
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a 
Figure 3. Shown is the overlap o between the fint and second perceptron as a function 
of the storage capacity oi for different dilution values/. The numerical simulations (symbols) 
are compared with the analytical results (solid curves). The broken curve represents the 
limit K = 0. The results were averaged aver 50 mns with systems of N = 200 neurons each. 
The statistical errors are smaller than the symbol sizes. 

capacities a, i.e. large a,,, the relearning procedure is more effective. The dashed line 
in figure 3 corresponds to the critical curve K ~ = O .  The curve represents the lower 
bound for the overlaps a. 

In order to improve dur algorithm the following iterative procedure has been used: 
1. Learn the perceptron of optimal stability with a coupling vector J = ( I , ,  ... , JN)T. 
2. Remove only the site j with the coupling that has the smallest absolute value 141. 
3. Relearn the perceptron of optimal stability on the remaining sites. 
4. Iterate steps two and three until the desired dilution is reached. 
Since an analytical solution for this iterative algorithm has not yet been found, the 

simulation data must be extrapolated to K~ = 0 numerically. However, it is difficult to 
gain small K values from simulations because near the critical storage capacity a,( K = 0). 
the learning time diverges for any known perceptron leaming rule [18]. 

We found that the analytical curves calculated in the one-step dilution case give 
inc ocsi iii lor our uara, 11 wc U S ~  J as a ircc pararneier. ~ t i c  rcsuiimg w r v c  me,&“) is 
given in figure 2. 

For comparison we have also included the quenched dilution curve, results of the 
hybrid method [8], the AT-line [19] as well as the curve calculated in  first-order replica 
symmetry breaking [ZO]. In the quenched dilution case the sites are removed at random 
and the diluted system is simply a network of Nf neurons with random outputs and 
uncorrelated patterns. Therefore a can be rescaled and a., = 2 holds. 

For the one-step dilution algorithm the storage capacity per synapsis is remarkably 
enlarged by using the perceptron of optimal stability instead of Hebb’s rule for the 
removal of the bonds. A further increase is gained using the iterative algorithm. 
Nevertheless for practical applications we believe that the iterative method is not 
appropriate, since a great amount of computation is needed. So the one-step dilution 
algorithms should be preferred. 

The results of the iterative algorithm are of greater interest from a theoretical point 
of view. The most important question in this context is: What is the maximum a., that 
can be reached by any dilution algorithm? This question has already been addressed 
by Bouten et a1 in [SI. Nevertheless it has recently been found that their replica 
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symmetric calculation is only stable below the AT-line in figure 2 [19]. The AT-line 
represents a lower bound that an optimal dilution algorithm must reach. Above this 
bound the replica symmetry is broken. A replica symmetry breaking (RSB) correction 
in first-order bas recently been calculated [20] yielding an upper bound for (I=*. Since 
we suspect that for this problem a replica symmetry breaking behaviour analogous to 
the SK model [21] is present, further orders of RSB might be needed. Since the first-order 
RSB calculation remarkably decreases the q,,, it is indeed possible that the iterative 
algorithm yields the optimal curve. 

Up until now the highest values for (I.,, have been achieved using the iterative 
algorithm. In principle every multistep dilution algorithm can be replaced by a one-step 
dilution procedure. The problem remains to discover the one-step selection rule realized 
by the multistep dilution procedure. If one knew this rule explicitly one could learn 
the optimal perceptron, remove the couplings according to this rule in one single step 

To gain first hints about such a selection rule, we examined the distribution of the 
initial couplings which were removed by the iterative algorithm. Therefore we stored 
all the coupling values of the perceptron that were learnt in the first step and kept 
track of all the sites that were removed during the iterations. The distribution of the 
coupling values of the first perceptron which correspond to these removed sites is 
plotted in figure 4. This distribution is Gaussian for all dilution values f, with zero 
mean and standard deviations 

q=(I-f)r, (18) 

where U, is the standard deviation of the initial coupling distribution. The last equation 
arises from the simple fact that all zero couplings of the initial perceptron are removed 
with probability one. 

In  a first attempt to convert the iterative algorithm presented above into a one-step 
algorithm, we tried to cut the couplings independently by using the probability distribu- 
tions from figure 4. Unfortunately this results in an me,, lower than the one achieved 
by cutting the weakest couplings according to a bound w. Hence our assumption of 

and p e r ~ p ~ ~ o n  of upiimai siabiiiiy, 

0 20 . 1 = , m  
w I - 055 - I = 060 

0.16 1 
I 

v 

0.04 

0 . o o L  
-0,6 6 

J 

Figure 4. The probability distribution of the coupling coefficients that were removed from 
the system are shown as a function of  different dilution valuesf: The initial storage capacity 
is 01 = 1.00. The simulations were averaged over 50 samples of N = 200 neurons. The initial 
probability distribution for the fully wnnected system is shown by the dashed curve. 
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an independent probability distribution to dilute the sites does not yield an improve- 
ment. Therefore future one-step algorithm versions have to take care of the correlation 
matrix between the couplings of the first perceptron. 

We would like to thank M Opper, W Kinzel and M Biehl for many stimulating 
discussions. The numerical simulations were carried out on the CRAY Y-MP of the 
HLRZ Julich. The work was supported by grants from the Deutsche Forschungsgemein- 
scnait. i t  is part of the PiD T h i s  of PK ana HE as weii as the dipioma tnesis of Mi. 
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